How does a magnetic compass work? (2024)

How does a magnetic compass work? (1)

by Chris Woodford. Last updated: August 29, 2023.

When Bob Dylan sang "like a rolling stone... with no direction home," he obviouslywasn't carrying his compass. Armed with a simple bit of magnetizedmetal, you can almost always find your "direction home" inan instant. People have been navigating with magnetic compasses for the best part of 900 years, so there mustbe something in it! What are compasses and how do they work? And whatabout the compasses people use in ships and airplanes where Earth'smagnetism isn't always a reliable method of navigation? Let's take a closer look!

Artwork: Most compasses are marked with the four main points North (N), South (S), West (W),and East (E). The four (lighter blue) points in between these are (running clockwise) NE, SE, SW, and NW. In between those points, we have NNE, ENE, ESE, SSE, SSW, WSW, WNW, and NNW, so thecompass needle here is pointing roughly to East North East (ENE). There'sa further level of division if you want to give even more precise directions. For example, in between NNE and NE, we have "North East by North". In between SSE and S, we have "South by East."

Sponsored links

Contents

  1. What is a compass?
  2. How do you use a compass?
  3. How do compasses work?
  4. Why compasses can be inaccurate
  5. Ship's compasses
  6. Other kinds of compasses
  7. Who invented the compass?
  8. Find out more

What is a compass?

How does a magnetic compass work? (2)

Photo: A magnetic compass points north because it aligns itselfwith the magnetic field produced inside Earth. Photo by Jeremy T. Lock courtesy of US Air Force andWikimedia Commons.

"... iron, a rich ore of which, placed in a vessel upon water, by an innate property of its own directs itself, just like the loadstone, North and South, at which points it rests, and to which, if it be turned aside, it reverts by its own inherent vigour."

De Magnete (1600), William Gilbert

The simplest compass is a magnetized metal needle mounted in such a way that it can spin freely. (You can make one yourself by magnetizing an ordinaryneedle, placing it carefully on a slice of cork, and letting the corkfloat in a tray of water.) Left to its own devices, the needle turnsuntil one end points north and the other south. You can usuallyfigure out which end is which from the position of the Sun in thesky, remembering that the Sun rises in the east and sets in the west. So if you're looking down on the floating needle at about noon, with the eye on the left and the point on the right,and the Sun is somewhere in front of you, you know the point is indicating north.

How do you use a compass?

Compasses you buy are a bit more sophisticated than floating needles but work essentially the same way.They have a lightweight, magnetized pointer mounted on a verylow-friction pivot that is sealed inside a small plastic cylinder filled with liquid.The pointer is built into a rectangle of plastic called a compasscard, printed with the cardinal points of thecompass (north, south, east, and west), and the intercardinalpoints (north-east, north-west, south-east, south-west).

To use a compass like this, you first figure out which direction is north. You let theneedle settle then rotate the compass card so the needle lines upwith the north-south axis and the end of the needle colored red,marked with an arrow, or printed 'N' points north. You can theninstantly see which direction is south, east, or west and (with thehelp of a map) set off in the direction you need to go.

How does a magnetic compass work? (3)

Photo: Modern magnetic compasses are marked with cardinal points (N, S, E, W) and have a 360° scale as well for "taking your bearing," which is how far away from north you should be heading (according to your map). Photo by Nathanael Callon courtesy of US Air Force andWikimedia Commons.

How do compasses work?

Magnetism is one of the first bits of science we learn in school and just about the firstthing we discover is that "like poles repel, unlike poles attract."In other words, if you hold two bar magnets so their north polesare almost touching, they'll push away from one another; if youturn one of the magnets around so one magnet's north pole is nearthe other magnet's south pole, the magnets will pull toward one another.

That's all there is to a compass: the red pointer in a compass (orthe magnetized needle on your home-made compass) is a magnet and it'sbeing attracted by Earth's own magnetism (sometimes called thegeomagnetic field—"geo" simply means Earth). As Englishscientist William Gilbert explained about 400 years ago, Earthbehaves like a giant bar magnet with one pole up in the Arctic (near the north pole) and another pole down in Antarctica (near thesouth pole). Now if the needle in your compass is pointing north, that means it's beingattracted (pulled toward) something near Earth's north pole.Since unlike poles attract, the thing your compass is being attractedto must be a magnetic south pole. In other words, the thing wecall Earth's magnetic north pole is actually the south pole of the magnetinside Earth. That's quite a confusing idea, but it'll make sense if you always rememberthat unlike poles attract.

How does a magnetic compass work? (4)

Artwork: Earth behaves as though it has a giant bar magnet built inside it. But the magnet is the opposite way around to how you might think, with its south pole up near Earth's actual (geographic) north pole and vice-versa. A compass needle points north because the north pole of the magnet inside it is attracted to the south pole of Earth's built-in magnet. Confusing, eh? Also note that the magnetic north pole and the real north pole don't exactly coincide.

Earth's magnetic field is actually quite weak compared to the "macho" forces likegravity and friction that really dominate our lives. For a compass tobe able to show up the relatively tiny effects of Earth's magnetism,we have to minimize the effects of these other forces. That's whycompass needles are lightweight (so gravity has less effect on them)and mounted on frictionless bearings (so there's less frictionalresistance for the magnetic force to overcome).

How does a magnetic compass work? (5)

Photo: In the 1960s, astronauts were equipped with little compasses like thisas part of their survival gear so they'd know where they were when they came back to Earth.Photo courtesy of NASA Johnson Space Center (NASA-JSC).

Sponsored links

Why compasses can be inaccurate

Compasses are brilliantly useful but they can sometimes lead us astray, because of twoquite different problems called declination (or variation) anddeviation. Here's why.

Declination (variation)

How does a magnetic compass work? (6)

Artwork: A full map of the compass points. N, S, E, and W are obviously North, South, East, and West, and B means "by", so "NBE" is "North by East" and "SWBS is "South West by South".Historic 1766 artwork from Andrew Mariner's book The Mariner's Compass Rectifiedcourtesy of Internet Archive.

Earth spins about an axis (a kind of invisible rod) running through the north pole(sometimes called the geographic north pole, at the "top" of theplanet) and the south pole (or geographic south pole, at the "bottom"of the planet). But Earth's magnetic field is a bit wonky and doesn'tquite line up with its axis of rotation. So the magnetic north pole(the place your compass points toward) doesn't precisely coincidewith the real north pole (it's several hundred km/miles) awayand the same goes for the magnetic south pole.

In practice, the difference between "true north" and "magnetic north" is small and generally (when you're out and about with acompass and map) you can treat the north a compass shows you asthough it were pointing to the real, geographic north pole.If we're being more accurate, the difference between "magnetic north" and "true north" is anangle that varies slightly from place to place (and from year toyear, because the position of Earth's magnetic north is constantlychanging) and it's called the declination or variation.When really accurate navigation is important (for example, on ships),you have to take the declination into account and correct for it.

Deviation

A compass is designed to react to the magnetic field generated by the swirling hot mass ofrock thousands of kilometers/miles deep inside Earth, but there arelots of other things going on, much nearer to your compass, that canthrow it well and truly out of whack. If you're inside an iron shipor a car, for example, all that metal can make a big difference. Theaccuracy of a compass measurement in a certain situation is calledthe deviation, and it's the angle between where the compasswould point if it were perfectly accurate (magnetic north) and whereit actually points. If there's a magnet nearby, or you're near aparticularly magnetic bit of Earth's crust, or there are fluctuatingelectric currents generating magnetic fields, your compass needle isgoing to be affected and its accuracy is going to bereduced. The most sophisticated compasses have compensating magnetsor pieces of iron built into them that you can adjust to cancel out any local magneticeffects.

How does a magnetic compass work? (7)

Photo: Good compasses have flip-up "sights" on them (top) so you can take your bearings accurately using distant landmarks. Photo by Shauntae Hinkle-Lymas courtesy of US Air Force andWikimedia Commons.

Ship's compasses

Declination and deviation don't matter so much if you're on foot with a map or in acar; generally, there are other things you can use to help you findyour way and it's hardly catastrophic if you take a wrong turn ortwo. On a ship, far from land and in bad weather (so you can'tnavigate by the sky), it's a whole different matter. Beforetechnological advances like GPS andradar came along, people's livesdepended on navigating accurately by compass alone. That's why ship'scompasses (sometimes called mariner's compasses) were much moresophisticated than the ones people typically used onland. In a modern ship's compass, the compass card is attached to a float with a number ofmagnetic needles underneath it and spins freely inside a large glassbowl filled with a mixture of alcohol and water (to minimize frictionand absorb vibrations from the moving ship). The whole thing ismounted on gimbals (pivots) in a stand called a binnacleso it stays horizontal even when the ship is pitching (moving up anddown) and rolling (rocking from side to side) in the waves.

How does a magnetic compass work? (8)

Photo: A mariner's (ship's) compass from the sailing ship Blossom. Note the gimbal-mounting that keeps itsteady as the ship pitches and rolls. Photo courtesy of Tim Evanson, published on Wikimedia Commonsunder a Creative Commons (CC BY-SA 2.0) licence.

Sponsored links

Other kinds of compasses

Gyrocompasses

If magnetic compasses can be tricky to use in ships, imagine how much worse they are in fast-moving aircraft. That's why airplanes (plus large shipsand some land vehicles) rely on gyrocompasses. Unlike a magneticcompass, which points the same way because of magnetic attraction, agyrocompass uses a gyroscope—a fast-spinning wheel, mounted ongimbals, that keeps rotating in the same direction whichever way youturn it. Gyrocompasses are better able to cope with the more "dynamicenvironment" onboard ships and planes and another advantage is thatthey can be set to indicate true north (the north pole) rather thanmagnetic north.

How does a magnetic compass work? (9)

Artwork: How a gyrocompass works: a heavy rotating gyroscope (yellow, center) powered by an electric motor (purple, bottom) spins inside two perpendicular mounting rings called gimbals (red and green). These are fixed by springs to an outer casing (blue), itself firmly attached to the body of a ship or an airplane. The basic idea is that the spinning gyroscope keeps an indicator pointing in the same direction, no matter how the ship or plane veers and drifts. The model shown here was developed by Hans Usener of Kiel Germany, from his US Patent 1,136,566: Gyrocompass, patented April 20, 1915, courtesy of US Patent and Trademark Office.

The gyrocompass was successfully developed in the early 20th century by American engineer Elmer Sperry (1860–1930), patented in 1908, and first demonstrated on a ship in 1911. However, Sperry's gyrocompass was actually based on an earlier (1906) invention by German scientist Hermann Anschütz-Kaempfe (1872–1931), who successfully sued Sperry for patent infringement in Germany with the help of Albert Einstein (1879–1955). Later patent infringement cases in the UK and the USA found in favor of Sperry, however, which is why he's largely credited with the invention today.

Astrocompasses

While magnetic compasses and gyrocompasses are set according to the Earth,astrocompasses are aligned with the position of celestial bodies(fixed points in the sky, such as the Sun or stars) and then indicatethe position of true north. They're more complex and harder to usethan magnetic compasses, but offer a good alternative in places likethe polar regions where magnetic compasses and gyrocompasses areunreliable.

How does a magnetic compass work? (10)

Photo: Gyrocompass and navigational equipment on a truck. Photo courtesy ofUS Geological Survey.

Radio compasses

Also called radio direction finders (RDF), these pick up directional signals beamed outfrom radio transmitters.The basic idea is that a receiving antenna (onboard something like a ship or airplane) picks up a stronger or weaker signal according to how it points toward the transmitting antenna.With original RDF equipment, you had to turn the receiving antenna one way or the other to maximize or minimize the signal, which allowed you to figure out where the transmitter was. With signals from more than one transmitter, you couldfigure out your own position. Automatic direction finders (ADF) on modern aircraft are radio compasses that automatically figure out and display directions using a pointer and dial similar to a traditional, magnetic compass.

Who invented the compass?

How does a magnetic compass work? (11)

Photo: A fateful compass: This is the compass that actor John Wilkes Booth used to navigate the Potomac River, as he made his escape after shooting US President Abraham Lincoln in 1865. Photo courtesy of Carol M. Highsmith's America, Library of Congress, Prints and Photographs Division.

No-one knows when or where compasses were invented, but this is what we do know:

  • ~300–200BCE: Primitive magnetic direction finders are believed to have been invented in China.
  • 12th century CE: More sophisticated compasses are invented independently in China, the Arabic world, and Europe and feature compass needles mounted on pins for the first time.
  • 13th century: Compasses incorporate compass cards marked with the now-familiar cardinal points and subdivisions.
  • 15th century: Navigators realize that compasses point to Earth's magnetic north pole rather than its true (geographical) north pole.
  • 16th century: Marine compasses are mounted in gimbals to reduce problems caused by the motion of ships.
  • 17th century: Englishman William Gilbert publishes a comprehensive scientific account of Earth's magnetism and uses it to explain why compasses point north.
  • 1880s: Scottish physicist William Thompson (Lord Kelvin) develops compasses that can be adjusted to work inside iron-hulled ships.
  • 1880s: Dutchman Marinus Gerardus van den Bos patents a gyrocompass. Others develop and refine the invention over the next few decades.
  • 1900s: Radio direction finding (RDF) is developed by Italian engineers Ettore Bellini and Alessandro Tosi.
  • 1906: Hermann Anschütz-Kaempfe (1872–1931) invents the modern gyrocompass.
  • 1911: Elmer Sperry's improved gyrocompass is successfully tested on a ship for the first time.
  • 1900–1920: Radio compasses (radio direction finders, RDFs) are developed.
  • 1973: The United States GPS satellite navigation project marks the beginning of a steady shift away from traditional navigation to more automated, easier-to-use methods of finding your way.

Don't want to read our articles? Try listening instead

If you'd rather listen to our articles than read them, please subscribe to our new podcaston Apple Podcasts, Spotify, Audible, Amazon, Podchaser,or your favorite podcast app, or listen below:

Find out more

On this website

  • GPS satellite navigation
  • Tools, instruments, and measurement
  • Pendulum clocks
  • Radar

On other sites

Books

For older readers

For younger readers and teachers

  • Follow that Map: A First Book of Mapping Skills by Scot Ritchie. Franklin Watts, 2009/2017. A basic 32-page introduction for ages 7–9.
  • Mapping Skills with Google Earth by Paul Bramley. Classroom Complete Press, 2015. Mainly for teachers, this is a curriculum-linked, activity-based introduction that offers ways of teaching students how to read and draw maps that cover increasingly large areas, from a small classroom to the entire world. Includes a teacher guide and student handouts. Separate books cover grades PK (prekindergarten) to 2, 3–5, and 6–8.
How does a magnetic compass work? (2024)
Top Articles
How to Use a VPN with Netflix (And Avoid Detection)
The BEST Instant Pot Chili {Award Winning} Recipe - Oh Sweet Basil
Maxtrack Live
Kaydengodly
Booknet.com Contract Marriage 2
Workday Latech Edu
T Mobile Rival Crossword Clue
Byrn Funeral Home Mayfield Kentucky Obituaries
50 Meowbahh Fun Facts: Net Worth, Age, Birthday, Face Reveal, YouTube Earnings, Girlfriend, Doxxed, Discord, Fanart, TikTok, Instagram, Etc
Craigslist Mexico Cancun
Pickswise the Free Sports Handicapping Service 2023
Craigslist In Fredericksburg
Riegler & Partner Holding GmbH auf LinkedIn: Wie schätzen Sie die Entwicklung der Wohnraumschaffung und Bauwirtschaft…
Steve Strange - From Punk To New Romantic
MADRID BALANZA, MªJ., y VIZCAÍNO SÁNCHEZ, J., 2008, "Collares de época bizantina procedentes de la necrópolis oriental de Carthago Spartaria", Verdolay, nº10, p.173-196.
104 Presidential Ct Lafayette La 70503
Craigslist Dog Kennels For Sale
Items/Tm/Hm cheats for Pokemon FireRed on GBA
Job Shop Hearthside Schedule
7440 Dean Martin Dr Suite 204 Directions
Nwi Arrests Lake County
Used Sawmill For Sale - Craigslist Near Tennessee
Craigslist Toy Hauler For Sale By Owner
Where to Find Scavs in Customs in Escape from Tarkov
Carson Municipal Code
Conan Exiles: Nahrung und Trinken finden und herstellen
Evil Dead Rise - Everything You Need To Know
Bjerrum difference plots - Big Chemical Encyclopedia
A Person That Creates Movie Basis Figgerits
Rs3 Ushabti
Craigslist Panama City Beach Fl Pets
Synergy Grand Rapids Public Schools
Tokyo Spa Memphis Reviews
Grave Digger Wynncraft
Trinket Of Advanced Weaponry
950 Sqft 2 BHK Villa for sale in Devi Redhills Sirinium | Red Hills, Chennai | Property ID - 15334774
Christmas Days Away
Kristen Hanby Sister Name
First Light Tomorrow Morning
Culver's Hartland Flavor Of The Day
Greater Keene Men's Softball
Wattengel Funeral Home Meadow Drive
Smith And Wesson Nra Instructor Discount
Prior Authorization Requirements for Health Insurance Marketplace
'Guys, you're just gonna have to deal with it': Ja Rule on women dominating modern rap, the lyrics he's 'ashamed' of, Ashanti, and his long-awaited comeback
Royals Yankees Score
Dr Mayy Deadrick Paradise Valley
Air Sculpt Houston
Mawal Gameroom Download
Mike De Beer Twitter
Lux Nails & Spa
Latest Posts
Article information

Author: Pres. Carey Rath

Last Updated:

Views: 5647

Rating: 4 / 5 (41 voted)

Reviews: 80% of readers found this page helpful

Author information

Name: Pres. Carey Rath

Birthday: 1997-03-06

Address: 14955 Ledner Trail, East Rodrickfort, NE 85127-8369

Phone: +18682428114917

Job: National Technology Representative

Hobby: Sand art, Drama, Web surfing, Cycling, Brazilian jiu-jitsu, Leather crafting, Creative writing

Introduction: My name is Pres. Carey Rath, I am a faithful, funny, vast, joyous, lively, brave, glamorous person who loves writing and wants to share my knowledge and understanding with you.